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Abstract - Despite recent advances in named entity extraction 
technologies, state-of-the-art extraction tools achieve 
insufficient accuracy rates for practical use in many 
operational settings. However, they are not generally prone to 
the same types of error, suggesting that substantial 
improvements may be achieved via appropriate combinations 
of existing tools, provided their behavior can be accurately 
characterized and quantified. In this paper, we present an 
inference methodology for the aggregation of named entity 
extraction technologies that is founded upon a black-box 
analysis of their respective error processes. This method has 
been shown to produce statistically significant improvements in 
extraction relative to standard performance metrics and to 
mitigate the weak performance of entity extractors operating 
under suboptimal conditions. Moreover, this approach provides 
a framework for quantifying uncertainty and has demonstrated 
the ability to reconstruct the truth when majority voting fails. 

Keywords: Knowledge discovery, text mining, named entity 
extraction, probabilistic aggregation, ensemble learning 

 

1 Introduction 
Since the 1980s, the increasing sophistication of machine 

learning and computer technologies has enabled the 
development of solutions to a variety of challenges facing the 
Natural Language Processing (NLP) community. Knowledge 
discovery systems are of particular interest to commercial, 
industrial, and government organizations that rely on computer 
processing to perform transactions, evaluate consumer 
demands, and, in general, draw conclusions and make decisions 
that depend upon an extensive knowledge base. Often, 
construction of such a knowledge base depends upon the 
automatic extraction of relational information and, more 
fundamentally, related named entities1 (e.g., people, 
organizations) from a collection, or corpus, of text documents 
(e.g., e-mail, news articles). Consequently, the reliability of 
these systems is highly susceptible to extraction errors. 

However, even state-of-the-art entity extraction tools are 
vulnerable to variations in (1) the source and domain of a 
corpus and its adherence to conventional lexical, syntactical, 
and grammatical rules; (2) the availability and reliability of 

                                                             
1 We will often use “entity” and “named entity” interchangeably. 

manually annotated data; and (3) the complexity of entity types 
targeted for extraction. Under these and other challenging 
conditions, extractors produce a range of interdependent errors 
that mangle entity output and rarely achieve adequate accuracy 
rates for practical use. However, many extraction technologies, 
distinguished by the nature of their underlying algorithms, 
possess complementary characteristics that may be combined 
to selectively amplify their attractive attributes (e.g., low miss 
or false alarm rates) and mitigate their respective weaknesses.  

Many previous extractor combination methodologies that aim 
to leverage these characteristics rely upon variations of a 
“voting” mechanism (e.g., majority vote [1]). In practice, such 
approaches often fall short, as they depend heavily upon the 
number and type of extractors chosen, and they do not account 
for variations in the underlying extraction methodologies and 
the differing characteristics of their errors. Moreover, such 
systems tend to be limited in their ability to assess uncertainty, 
a critical capability for evaluating reliability in downstream 
analysis and decision-making. Proposed enhancements to the 
basic voting mechanism include, but are not limited to, 
weighting of constituent (i.e., base) extractors’ output [2]; 
stacking of base extractors [3]-[5]; establishing a vote 
“threshold” [6]; and bagging [7]. Even more sophisticated 
techniques, such as that described in [8], fail to adequately 
account for the impact of text within a local neighborhood of a 
word of interest. A method based on the Conditional Random 
Field (CRF) model presented by Si, et al. [9], demonstrated that 
performance is enhanced by incorporating the classification 
structure of nearby words. 

The aggregation methodology described in this paper, i.e., the 
entity meta-extractor, represents a significant departure from 
previous combination techniques. Specifically, the meta-
extractor harnesses the unique characteristics of its base 
extractors via the estimation of conditional probability 
distributions over a space of extraction errors defined relative 
to the entities themselves. The resulting performance profiles 
are used to determine the most likely truth, in a probabilistic 
sense, given extractor output in a region of text.  

Section 2 of this paper will describe the probabilistic 
characterization of base extractor performance, and Section 3 
will focus on the construction and ranking of hypotheses. In 
Section 4, empirical results will be presented showing that the 
meta-extractor achieves statistically significant improvements 



in entity extraction over its base extractors and a majority vote 
algorithm. Finally, we will discuss our conclusions and future 
research in Section 5. 

2 Base extractor performance 
 In the remaining discussion, we assume that an entity can 
be expressed as a string (i.e., name) associated with a location2 
in the source text. To enable the characterization of base 
extractor performance, we assume an annotated set of 
documents is available (distinct from those used for training) to 
serve as an “evaluation corpus” for the base extractors3. The 
ground truth entity data, G, consists of the true (i.e., manually 
annotated) entities identified in the evaluation corpus. The 
meta-extractor aggregates the output of 1>K  base entity 
extractors, where kD  denotes the output of extractor k relative 
to a corpus. When the locations of a ground truth and extracted 
entity intersect, we say that the entities overlap4. 

2.1 Transformations of entity data 
Entity extractors are generally of three basic types: rule-

based, statistical and heuristic. Despite their algorithmic 
differences, however, their common objective is to correctly 
extract fragments from text that represent real-world entities, 
such as people, organizations, or locations. At a high level, this 
task may be regarded as a three-stage process in which an 
extractor (in some prescribed order) must detect a reference to 
an entity in a document, identify the offsets that delineate the 
name of a detected entity, and classify it as to its type. We 
focus chiefly on the first two of these in this paper. 

Many of the most effective extractors are proprietary, and 
hence, direct analysis of their underlying algorithms is often 
infeasible. Therefore, we choose to treat each extractor k as a 
“black box”. However, mistakes that are made on an annotated 
corpus result in observable discrepancies between its output, 

� 

Dk , and the known ground truth, G. Thus, G serves as a 
baseline relative to which extractor behaviors can be 
characterized. More formally, the extraction process can be 
regarded as a transformation from G to 

� 

Dk , denoted by 

� 

τ (G,Dk ) , that is driven by the occurrence of extraction errors. 
Hence, assessing the performance of a base extractor lies in 
characterizing the types and propensity of the errors driving 
this transformation. Unfortunately, G and 

� 

Dk  can be very 

                                                             
2 We express the location of a text string in terms of its start and end offsets 
relative to the first character in the corpus.  
3 Three distinct corpora are required for: (1) training the base extractors, (2) 
evaluating their performance, (3) testing the meta-extractor. 
4 We generally assume that ground truth entities do not overlap and that the 
entities extracted by extractor k do not overlap. 

large, so it is prudent to decompose 

� 

τ (G,Dk )  into an ordered 
collection of smaller, more manageable (i.e., elementary) 
transformations; i.e., 

� 

τ (G,Dk ) ≡ {τ i (Gi ,Dki )} , where 

� 

Gi  and 

� 

Dki  are subsets of G and 

� 

Dk  respectively. 

The elementary transformations 

� 

τ i  occasionally assume 
complex forms. In Fig. 1, for example, the output of Extractor 
2 corresponds to a transformation of two ground truth entities 
into one extracted entity. Therefore, we choose to define the 

� 

τ i ' s  in terms of the number of ground truth and extracted 
entities that they involve, subject to a desired set of properties. 
We now specify these properties more formally.  

Let 

� 

τ i (Gi ,Dki ) ≡ τ m,n  exactly when 

� 

Gi  is an ordered set of 

� 

m ≥ 0  consecutive ground truth entities and 

� 

Dki  is an ordered 
set of 

� 

n ≥ 0  consecutive extracted entities from extractor k, 
where at least one of m and n is strictly positive5. The set of 
allowable types forms a transformation space given by 

� 

T = {τ m,n :m,n ≥ 0,m + n > 0} . For a set of elementary 
transformations 

� 

{τ i (Gi ,Dki )}  that comprise 

� 

τ (G,Dk ) , we 
require that the following hold:  

1) For all 

� 

g ∈G , there is exactly one 

� 

τ i (Gi ,Dki )  such that 

� 

g ∈Gi ; similarly, for all 

� 

d ∈Dk , there is exactly one 

� 

τ j (G j ,Dkj )  such that 

� 

d ∈Dkj ;  

2) If 

� 

g ∈G  and 

� 

d ∈Dk  overlap, then there exists some 

� 

τ i (Gi ,Dki )  such that 

� 

g ∈Gi  and 

� 

d ∈Dki ; 
3) Any 

� 

τ i (Gi ,Dki )  cannot be partitioned into two or more 
transformations satisfying both (1) and (2). 

Under these properties, the entities extracted by Extractors 1 
and 2 in Fig. 1 correspond to two 

� 

τ 1,1  transformations and one 

� 

τ 2,1 transformation, respectively.  

It can be easily shown that properties (1)-(3) are necessary and 
sufficient to determine a unique collection of elementary 
transformations that partition 

� 

τ (G,Dk ) , a desirable condition 
to ensure consistent meta-extractor performance. However, the 
space of 

� 

τ m,n  transformation types is massive, and 
transformations become rarer as m and n become large. Hence, 
from a practical perspective, annotated data may be too sparse 
to compute reliable probability estimates over an unabridged 
transformation space. To that end, we relax property (1) above 
so that we can further decompose rare transformation types into 
a combination of simpler, overlapping transformation types that 
are more frequently observed. Care must be taken to ensure 
that the partition derived from a reduced space of 
transformation types is unique. We have typically limited the 
space to 

� 

T = {τ 0,1 ,τ 1,0 ,τ 1,1 ,τ 1,2 ,τ 2,1} . 
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� 

τ 0,0  refers to the transformation involving no true or extracted entities at a 
corpus location. This event is not directly observable or easily characterized.  

 
Fig. 1. Ground truth entity data and corresponding extracted data. 
 



Many of these elementary transformations, e.g., 

� 

τ m,n ,m ≠ n , 
encapsulate a variety of common extraction errors. For 
example, an extractor may detect one entity where there are, in 
fact, three. Since these types of errors are implicitly accounted 
for via the transformation space, we can think of these as 
implicit errors (which, notably, include the Miss and False 
Alarm errors, 

� 

τ 1,0  and 

� 

τ 0,1 , respectively). However, observe 
that the 

� 

τ 2,1 transformation in Fig. 1 contains additional 
discrepancies between the true and extracted entities that the 
transformation type does not embody. Specifically, the output 
of Extractor 2, “President Barack Obama of the United States”, 
includes the extra text “President” and “of the”. These and 
other discrepancies within instantiated transformations can be 
regarded as explicit errors and are mapped into a set of error 
types, 

  

� 

E = e1,e2,…,es{ } , called an error space.  

2.2 The error space 
Though we place no specific constraints on the 

cardinality of the error space, the granularity of E must be 
considered. That is, a coarse error space may prevent subtle 
extractor behaviors from being adequately characterized, but an 
error space that is too fine may cause probability estimation to 
be problematic when annotated data are sparse.  

To illustrate these concepts, suppose we define the space of 
discrepancies to consist of all possible ways that “extra 
characters” can corrupt an entity name. Then the three spaces 
defined in Eq. (1) each constitute a valid error space. 

 

        

� 

(E1) e =  "extra characters"
(E2) el =  "extra characters + name",

er =  " name + extra characters"
(E3 ) eli =  " i extra characters + name", i = 1,2,…, k

eri =  " name + i extra characters", i = 1,2,…, k

 (1) 

Observe that the respective cardinalities of 

� 

Ei  in Eq. (1) are 
given by 

� 

E1 = 1 , 

� 

E2 = 2 , and 

� 

E3 = 2k . In the empirical 
studies presented in Section 4, we have utilized an error space 
defined as in Eq. (2).  

 

� 

ex =  " extra characters",
em =  " missing characters"

 (2) 

Ultimately, the choice of an appropriate mapping (and hence, 
E) may be influenced by many factors that depend upon the 
application in question and its associated requirements. 
However, as mentioned above, the amount of annotated data 
available for estimating probability distributions over 
transformation and error types (i.e., implicit and explicit errors) 
will likely play a critical role. 

2.3 Error probability estimation 
For each base extractor k, we must estimate a probability 

distribution over a transformation space, T, and an error space, 

E. At a high level of abstraction, T and E are related 
hierarchically; that is, explicit errors occur within observed 
transformations, and it is natural to exploit this dependency. 
Specifically, we compute the relative frequency of each 
transformation type in the evaluation corpus, along with the 
relative frequency of each error conditioned on transformation 
type. In determining the latter, an explicit error of type 

� 

e j ∈E  
may occur more than once in conjunction with a transformation 
(depending on E and T). However, we make the simplifying 
assumption that within an observed elementary transformation, 
explicit errors of different types may co-occur, but those of the 
same type may not.6 Accordingly, we say the state of each 
explicit error is binary, and is given by  

 

� 

sτ i (e j ) =
1,  if e j  occurs within τ i  
0,  otherwise

⎧ 
⎨ 
⎩ 

sτ i (E) = {sτ i (e j )}e j∈E ,τ i ∈Tk

 (3) 

where 

� 

Tk = {τ i (Gi ,Dki )}  is the set of elementary 
transformations that form 

� 

τ (G,Dk ) , and 

� 

sτ i (E)  is the joint 
state of all defined error types within 

� 

τ i (Gi ,Dki ) .  

To exemplify this concept, suppose we observe the 

� 

τ 1,1  
transformation “Barack Obama”  “when Barack Obama was 
elected”. No implicit errors are associated with this 
transformation type, but the set of explicit errors that occur 
relative to error space 

� 

E1  in Eq. (1) is 

� 

{e} . Similarly, for 

� 

E2 , 

� 

{el ,er} ; and for 

� 

E3 , 

� 

{el5 ,er12 } . We can estimate the conditional 
probabilities of the explicit error types in E for extractor k via 
the expression 

 

� 

ˆ P k (e j | τ m,n ) =
sτ i

(e j | τ m,n )
τ i∈Tk

∑
Iτ i

(τ m,n )
τ i∈Tk

∑
, e j ∈ E   (4) 

where 

� 

I (⋅)  is the indicator function, 

� 

τ m,n ∈T  is a given 
transformation type, and 

� 

sτ i (e j |τ
m,n )  and 

� 

Iτ i (τ
m,n )  are defined 

to be 0 if transformation 

� 

τ i  is not of type 

� 

τ m,n . Similarly, the 
probability estimate for each transformation type is given by 

 

� 

ˆ P k (τ m,n ) =
Iτ i

(τ m,n )
τ i∈Tk

∑
Tk

,τ m,n ∈ T . (5) 

Note that there are a variety of alternative estimates that one 
might propose. Those defined in Eq. (4) and Eq. (5) were 
chosen for their computational simplicity and because they 
provide reasonable estimates of the quantities of interest 
assuming modest amounts of data. 

                                                             
6 In our empirical studies, we found that relaxing this assumption generally had 
negligible impact on meta-extractor performance. 



3 Extractor aggregation 
In this section, we present a technique for aggregating 

base extractor output that leverages their performance 
characteristics to probabilistically rank hypothesized entities. 
This ranking forms the basis for determining meta-extractor 
output and associated confidence. 

3.1 Meta-entities 
In an operational setting, the base extractors are applied 

to a corpus for which ground truth is unknown. Using only the 
extracted output of its K base extractors7, the meta-extractor 
must determine the truth, G. 

Lacking access to the source text, the overlapping entities 
extracted by all of the base extractors at a given location in the 
corpus contain all the available information regarding the 
underlying ground truth at that location. The union of this 
overlapping extracted data yields a meta-entity, a novel 
construction used to establish a hypothesis space associated 
with this ground truth. Fig. 2 provides an excerpt of source text 
overlaid with the output of two hypothetical extractors, whose 
extracted data form two meta-entities.  

3.2 The hypothesis space 
We assume that any true entities must lie strictly within 

the corresponding meta-entity boundaries. Given this 
assumption, it only remains to determine the unique 
combination of words in the meta-entity that exactly matches 
these entities. To this end, we construct a hypothesis space that 
consists of all possible forms the ground truth entities may 
take. For example, the “President Obama” meta-entity in Fig. 2 
yields a hypothesis space consisting of the following: 

1) “President Obama” 
2) “President”, “Obama” 
3) “President” 
4) “Obama” 
5) “ ” (i.e., the NULL hypothesis) 

For small meta-entities it is feasible to generate the hypothesis 
space exhaustively. However, the space grows exponentially 
with meta-entity size and may be pared down by means of prior 
knowledge and/or assumptions. Such size constraints have not 
significantly impacted performance in our empirical studies.  

Furthermore, the assumption that the ground truth entities lie 
entirely within the meta-entity boundaries does not always hold 
and may at first seem unreasonable. Indeed, when this 

                                                             
7 To address efficiency requirements of certain real-world applications, we 
assume that the source text cannot directly be accessed. 

assumption does not hold, the hypothesis space generated from 
the meta-entity will not contain the truth, and we say that the 
hypothesis space is not closed. In such cases, the meta-
extractor will be unable to discover the truth. 

Note, however, that the closure rate8 of the hypothesis space is 
closely related to the number and diversity of the base 
extractors. In our empirical studies, utilizing four very different 
open source entity extractors, the truth was contained in the 
hypothesis space as often as 98% of the time. This finding 
suggests that for practical purposes, our assumption may, in 
fact, be reasonable. Strategies for increasing the closure rate 
include expanding the collection of base extractors, or enabling 
access to the source text during hypothesis space generation. 

3.3 Ranking hypotheses 
Given the hypothesis space 

� 

Ωx  corresponding to a meta-
entity x and the overlapping output 

� 

Dkx  of base extractor k, the 
likelihood of each hypothesis 

� 

H jx ∈Ωx  must be computed. 
Under the assumption that 

� 

H jx  is true, and provided the 
transformation and error spaces are appropriately defined, there 
is a unique set of transformations 

� 

T jk  and associated explicit 
errors that transforms 

� 

H jx  into 

� 

Dkx . This is called the error 
pathway between the hypothesis and the extracted data. For 
example, let our hypothesis be Hj: “President”, “Obama” in 
reference to meta-entity “President Obama” from Fig. 2. Based 
on the assumption that Hj is true, the pathway generated by 
Extractor 1 consists of a 

� 

τ 2,1 transformation with no explicit 
errors, whereas that generated by Extractor 2 consists of a 

� 

τ 1,1  
and 

� 

τ 1,0 transformation with no explicit errors. Since each 
hypothesis induces a unique pathway, computing its likelihood 
reduces to estimating the probability of observing this pathway. 

Hence, the likelihood of each hypothesis can be expressed as a 
function of the probabilities estimated as described in Section 
2.3. Let 

� 

H jx ∈Ωx  be the hypothesis of interest and 

  

� 

Dx = D1x ∪ D2x ∪…∪ DKx  be the corresponding (i.e., 
overlapping) data extracted by the K base extractors. We 
estimate the conditional probability of 

� 

H jx  given the observed 
extracted data 

� 

Dx , via the following expression: 

  

� 

P H jx Dx( ) ∝ P Dx H jx( ) ⋅P H jx( )
= P D1x ,D2x ,…,DKx H jx( ) ⋅P H jx( )

,    (7) 

                                                             
8 The closure rate is defined as the relative frequency with which hypothesis 
spaces contain the corresponding truth. 

 
Fig. 2. Two meta-entities are formed from overlapping extracted data – “President Obama”, “Edward M. Liddy of the American International Group”.  
 



where 
  

� 

P(D1x ,D2x ,…,DKx H jx)  is the joint conditional 
probability of the extracted data produced by the base 
extractors, and the prior probability of 

� 

H jx  is given by 

� 

P(H jx) . If desired, Eq. (7) can be simplified via various 
assumptions, such as assuming a uniform prior over 

� 

H jx ∈Ωx  
and/or statistical independence of the base extractors, 
transformations and errors. In many of our studies, we have 
assumed a uniform prior over the hypothesis space. 
Additionally, due to the data sparseness associated with many 
real-world applications, we have assumed independence of the 
extractors and transformations, as well as conditional 
independence of the explicit errors. Based on these 
assumptions,   

� 

P H jx Dx( )  can be expressed as follows: 

 
      

� 

P H jx Dx( ) ∝ P D1x ,D2x ,…,DKx H jx( ) = P Dkx H jx( )( )k =1

K∏  (8) 

where 

� 

P Dkx H jx( ) = Pk sτ i E( ) |τ m,n( )Pk τ m ,n( )
τ m,n∈T
∑

τ i∈T jk
∏

Pk sτ i E( ) |τ m,n( ) = Pk sτ i e j( ) |τ m ,n( )
e j∈E
∏

 

and 

� 

Pk (sτ i (E) |τ
m,n ) = 0  if transformation 

� 

τ i  is not of type 

� 

τ m,n . 

The null hypothesis, 

� 

H 0x = ∅ , is a special case and is handled 
slightly differently. Given that 

� 

H 0x  is true, the error pathway 
associated with the output of each base extractor will be 
composed of either 

� 

n > 0  

� 

τ 0,1  transformations or one 

� 

τ 0,0  
transformation. Though we do not directly estimate 

� 

Pk (τ
0,0)  for 

the base extractors, 

� 

τ 0,1  and 

� 

τ 0,0  are disjoint and are the only 
transformation types that can occur under this assumption. 
Hence, 

� 

ˆ P k (τ 0,0 ) = 1− ˆ P k (τ 0,1)  constitutes a reasonable estimate.  

Once each likelihood has been computed, the hypotheses can 
be ranked accordingly. In simple applications of the meta-
extraction methodology the “winning” hypothesis may be 
accepted as the truth. However, the probabilistic ranking 
enables the quantification of uncertainty associated with the 
entity data. Moreover, it presents a framework for considering 
the top n competing hypotheses, or all hypotheses whose 
probabilities exceed a specified threshold. Effective strategies 
that exploit this ranking may yield significant rewards since, in 
our studies, the three highest ranked hypotheses contained the 
truth as often as 94.5% of the time. Ultimately, the choice of 
how to leverage the ranking depends upon the capabilities of 
the system utilizing this method and the requirements of the 
particular application domain. 

4 Empirical studies 
In this section, we present the results of two aggregation 

experiments using the output of (1) GATE, a rule-based 
extraction tool [10]; (2) LingPipe, an extraction tool based on 

Hidden Markov Models (HMMs) [11]; (3) Stanford Named 
Entity Recognizer (SNER), based on CRFs [12]; and (4) 
BALIE, an extraction tool that utilizes unsupervised learning 
[13]. These experiments were carried out using two publicly 
available annotated data sets: MUC 6 (Wall Street Journal) and 
CoNLL-2003 (Reuters).  

The following studies focused upon two relevant real-world 
scenarios. The first involved a test in which the base extractors 
and the meta-extractor used identical training data. The meta-
extractor, which requires annotated data for evaluation, used 
base extractors trained on less data, pitting weak learners 
against strong. To this end, MUC 6 was used in a 10-fold cross-
validation procedure where, within each fold, 10% of the 
corpus was set aside for testing, and the remaining 90% was 
used to train and evaluate the base extractors.9 The resulting ten 
performance estimates were bootstrapped (1000 samples) and 
displayed in a box plot (Fig. 3).  

The second scenario assumes more challenging conditions in 
which the base extractors cannot be trained using 
representative data. These include cases where proprietary or 
rule-based extraction tools cannot be (re)trained and streaming 
text applications, where the source text is evolving over time 
and continual retraining of the base extractors is 
computationally infeasible. We simulated these conditions by 
training the base extractors on MUC 6 and then evaluating 
their performance and aggregating their output on CoNLL-
2003. As in the first scenario, we performed 10-fold cross-
validation, and the resulting estimates were bootstrapped and 
plotted (Fig. 3). For comparison, each plot includes 
performance estimates for a majority rule approach that is 
based on a simple B-I-O model [1]. 

4.1 Results 
In Fig. 3, we have presented our results in terms of F 

measure (as computed in the CoNLL-2003 evaluation), Exact 
Match (EM) rates, and the combined Miss and False Alarm 
rates10 for each base extractor, the majority vote algorithm, and 
the meta-extractor. We also assessed statistical significance in 
each case via a nonparametric pairwise test. 

The top row in Fig. 3 presents the results generated for the first 
experimental scenario. The base extractors founded upon 
statistical methodologies, LingPipe and SNER, produced F 
measures that significantly exceeded those of GATE and 
BALIE. In general, we expected this behavior, since statistical 
methodologies often excel when they are trained on 
representative data. However, the performance of GATE 
clearly exceeded that of BALIE11. 

                                                             
9 Probability estimates were computed from the 90% via 9-fold cross-
validation. 
10 These error types are often traded off to address operational requirements, 
but here we focus on the combined impact of both.  
11 BALIE was trained on a set of prepackaged untagged websites, negatively 
impacting its performance in our experiments. 



Note that the improvement in the EM rate by the meta-extractor 
relative to LingPipe was significant, with a p-value of 0.002. 
For the other performance metrics, the improvement over the 
base extractors and majority vote was also highly significant, 
with     

� 

p = 0.001. Unlike the majority vote algorithm, the meta-
extractor improved upon both the high EM rate of LingPipe 
and the low miss and false alarm rates of SNER. This result 
illustrates the ability of the meta-extractor to leverage the 
respective strengths of all its base extractors, achieving 
improved overall performance. 

In the second experimental scenario (Fig. 3, bottom), the 
degree of degradation in the performance of LingPipe and 
SNER was surprising. With respect to its EM rate and its miss 
and false alarm rates, SNER trails the other methods in this 
case. It is likely that the CoNLL-2003 source text differs 
considerably from MUC 6 with regard to its key characteristics. 
Also, the relative complexity of its underlying statistical model, 
the CRF, may render SNER more vulnerable to this scenario 
with regard to these metrics. In any case, GATE and BALIE 
appear to be fairly robust to these conditions.  

Clearly, however, the meta-extractor was able to compensate 
for the failure of LingPipe and SNER. For all three 
performance metrics, the meta-extractor improvement over its 
base extractors was significant with a p-value of 0.001. With 
respect to majority vote, the naïve combination method 
achieved some success in the second scenario. However, in the 
former case, it was unable to effectively leverage the strengths 

of two strong extractors in the presence of two weak ones. This 
speaks to a severe limitation in such approaches. In contrast, 
the ability of the meta-extractor to directly leverage the 
strengths and weaknesses of its base extractors appears to 
provide it a considerable advantage. 

4.2 Other considerations 
In practical applications, standard metrics do not reflect 

the full range of advantages the meta-extractor provides. The 
construction of a hypothesis space that contains all possible 
forms of ground truth allows the meta-extractor to generate a 
ranking where the “winning” hypothesis is correct, even if the 
base extractors and the majority vote algorithm fail.  

Table 1 presents an example of this phenomenon derived from 
the MUC 6 data set, in which all four base extractors 

Fig. 3: Left to right: Exact Match, Miss+False Alarm, and F for the meta-extractor (Meta), majority vote (Maj) and the base extractors. The black line 
indicates the median; the box corresponds to the interquartile range (IQR); the whiskers extend to the most extreme point within 1.5 IQR of the 
median. The extractors were trained on MUC 6; the meta-extractor and majority vote were tested on MUC 6 (top), CoNLL-2003 (bottom). 
 

TABLE 1 
RECONSTRUCTING THE TRUTH 

Extractor Extracted Entity 1 Extracted Entity 2 

BALIE “Federal Savings” “Association” 
GATE “Valley Federal Savings” “Loan Association” 

LingPipe “Valley” “Federal Savings and 
Loan Association” 

SNER “Valley Federal Savings” “Loan Association” 

Meta “Valley Federal Savings and Loan Association” 
Table 1: An example from MUC 6, where the meta-extractor 

reconstructed the truth. There were 233 hypotheses in the 
hypothesis space 

� 

Ω. Majority voting fails in this instance. 

 



incorrectly extracted portions of “Valley Federal Savings and 
Loan Association”. Naive voting methods favor the output of 
GATE and SNER, which are in complete agreement, and 
weighted voting methods might favor SNER, since it has been 
the most effective under ideal conditions. However, the meta-
extractor correctly determined, based upon the performance 
profiles of its base extractors, that “Valley Federal Savings and 
Loan Association” was the most likely truth, with a probability 
of 0.33312.  

5 Conclusions 
The experimental results presented provide evidence that 

the meta-extractor yields statistically significant improvements 
over its base extractors with respect to conventional summary 
metrics, exceeding the capabilities of a majority vote. In 
particular, it has demonstrated the ability to largely mitigate 
degradation due to operating conditions in which proper 
training of the base extractors is either computationally 
impractical or impossible. Moreover, we have observed that the 
constructed hypothesis space, when based on the output of the 
four extractors combined in this work, contains the truth as 
much as 98% of the time, and that the truth is contained in the 
top three ranked hypotheses as often as 94.5% of the time. This 
suggests that additional value may be achieved if the ranking 
can be exploited to its full potential.  

Interestingly, the meta-extractor exhibits the ability to 
determine the underlying ground truth when all of its base 
extractors produce corrupted output. This capability provides 
obvious value to real-world applications, since highly corrupted 
entity data are a common occurrence when faced with the 
challenges associated with real data.   

Important considerations in the application of this method to 
real-world problems motivated certain independence 
assumptions in the likelihood computation. Though the meta-
extractor has successfully demonstrated that this aggregation 
methodology can be highly effective, we expect that, in 
general, these assumptions will seldom hold, and in some cases 
there may be a negative impact on meta-extractor performance. 
However, we conjecture that a joint probability model over the 
extractors, transformations and errors, though potentially more 
effective under data-rich conditions, would rapidly degrade 
when data are sparse. The simpler model may be more robust 
to these challenges and ultimately more practical in an 
operational setting. In light of these considerations, however, 
extending the meta-extractor to leverage joint information 
when sufficient annotated data are available may be justified. 

Though these experiments used open source extractors, the 
meta-extraction framework possesses the capability to leverage 
any named entity extractor, proprietary or otherwise, whose 
performance can be quantified. Hence, new and more effective 
technologies developed for NLP can be readily incorporated. 
                                                             
12 The second most likely hypothesis matched the output of GATE and SNER 
and had a probability of 0.214. 

As such, this aggregation approach has the potential to provide 
long-term value in real-world entity extraction applications as 
it matures alongside the most effective technologies in named 
entity extraction. 
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